Statistics Formula Sheet:

Mean:	Sample Mean:	Population Mean:	
	$\bar{X} = \frac{\sum X}{n}$	$u = \frac{\sum X}{N}$	
Median: (Q2)	If n is odd: If n is even:		
	$M = \left(\frac{n+1}{2}\right)^{th} Term$	$M = \frac{\left(\frac{n}{2}\right)^{th} Term + \left(\frac{n}{2} + 1\right)^{th} Term}{2}$	
Mode:			
	The number with the highest frequency.		
Range:		77 . 7	
H → Highest Value L→ Lowest Value	Range = H - L	$MidRange = \frac{H+L}{2}$	
Standard Deviation:	Sample:	Population:	
	$s = \sqrt{\frac{\sum (X - \bar{X})^2}{n - 1}}$	$\sigma = \sqrt{\frac{\sum (X - u)^2}{N}}$	
Variance:	Sample Variance:	Population Variance:	
	$s^2 = \frac{\sum (X - \bar{X})^2}{n - 1}$	$\sigma^2 = \frac{\sum (X - u)^2}{N}$	
Coefficient of Variation:	Sample CV:	Population CV:	
	$CV = {}^{S}/_{\bar{X}} \times 100\%$	$CV = \sigma/u \times 100\%$	
Mean Absolute	Sample MD (Mean):	Population MD (Mean):	
Deviation:	$MD = \frac{\sum X - \bar{X} }{n}$	$MD = \frac{\sum X - u }{N}$	
Average Deviation:	Sample AD:	Population AD:	
	$AD = \frac{\sum (X - \bar{X})}{n}$	$AD = \frac{\sum (X - u)}{N}$	

Quartile:	$(n+1)^{th}$		
	$\boldsymbol{Q}_{k} = k \left(\frac{n+1}{4}\right)^{th} Term$		
	$Q_1 = 1 \left(\frac{n+1}{4}\right)^{th} Term$ $Q_3 = 3 \left(\frac{n+1}{4}\right)^{th} Term$		
Percentile:	$(n+1)^{th}$		
	$\mathbf{P}_{k} = k \left(\frac{n+1}{100}\right)^{tn} Term$		
	$P_{30} = 30 \left(\frac{n+1}{100}\right)^{th} Term$ $P_{70} = 70 \left(\frac{n+1}{100}\right)^{th} Term$		
Decile:	th.		
	$\boldsymbol{D_k} = k \left(\frac{n+1}{10}\right)^{tn} Term$		
Octile:	+h		
	$\mathbf{O}_{k} = k \left(\frac{n+1}{8}\right)^{th} Term$		
Interquartile Range:	$IQR = Q_3 - Q_1$		
Quartile Deviation:			
	$\mathbf{QD} = \frac{Q_3 - Q_1}{2} = \frac{1}{2}(IQR)$		
Coefficient of Quartile			
Deviation:	$\mathbf{CQD} = \frac{Q_3 - Q_1}{Q_3 + Q_1}$		
Range of Outliers:	$[Q_1 - 1.5 IQR, Q_3 + 1.5IQR]$		
	Note: Any data point that exists outside of the range shown above is considered an outlier.		
Coefficient of Range:	$CR = \frac{H - L}{H + L}$		

	General Formula:	Expanded Form:	2 Numbers:
Arithmetic Mean:	$\overline{X} = \frac{\sum X}{n}$	$\overline{X} = \frac{X_1 + X_2 + X_3 + \dots + X_n}{n}$	$AM = \frac{a+b}{2}$
Geometric Mean:	$\overline{X}_{G} = \left(\prod_{i=1}^{n} X_{i}\right)^{\frac{1}{n}}$	$\overline{X}_G = (X_1 * X_2 * X_3 X_n)^{1/n}$	$GM = \sqrt{ab}$
	$\bar{\boldsymbol{X}}_{\boldsymbol{G}} = 10^{\left(\frac{\sum \log(X)}{n}\right)}$	$\bar{X}_{G} = 10^{\left(\frac{\log(X_1) + \log(X_2) + \dots + \log(X_n)}{n}\right)}$	$GM = 10^{\frac{\log(a) + \log(b)}{2}}$
Weighted Mean:	$\overline{X}_{W} = \frac{\sum WX}{W}$	$\overline{X}_{W} = \frac{W_{1}X_{1} + W_{2}X_{2} + \dots + W_{n}X_{n}}{W_{1} + W_{2} + \dots + W_{n}}$	$\mathbf{WM} = \frac{W_1a + W_2b}{W_1 + W_2}$
Harmonic Mean:	$\overline{X}_{H} = \frac{n}{\sum \left(\frac{1}{X}\right)}$	$\bar{X}_{H} = \frac{n}{\frac{1}{X_{1}} + \frac{1}{X_{2}} + \frac{1}{X_{3}} + \ldots + \frac{1}{X_{n}}}$	$HM = \frac{2}{\frac{1}{a} + \frac{1}{b}} = \frac{2ab}{a+b}$
Root Mean Square:	$X_{rms} = \sqrt{\frac{\sum (X^2)}{n}}$	$X_{rms} = \sqrt{\frac{{X_1}^2 + {X_2}^2 + {X_3}^2 + \dots + {X_n}^2}{n}}$	$X_{rms} = \sqrt{\frac{a^2 + b^2}{2}}$
Mean Relationship:	$ extbf{\textit{GM}} = \sqrt{(AM)(HM)} \qquad ext{For 2 Numbers}$		
		$\sqrt{ab} = \sqrt{\left(\frac{a+b}{2}\right)\left(\frac{2ab}{a+b}\right)}$	

Statistics Formulas for Grouped Data:

	-	
Mean:	$\overline{X} = \frac{\sum f X_m}{\sum f} = \frac{\sum f X_m}{n}$	
Midpoint of Range:	$X_m = \frac{X_1 + X_2}{2}$	
Standard Deviation:	$s = \sqrt{\frac{\sum f(X_m - \bar{X})^2}{n - 1}} = \sqrt{\frac{\sum fX_m^2 - \frac{(\sum fX_m)^2}{n}}{n - 1}}$	
Variance:	$s^{2} = \frac{\sum f(X_{m} - \bar{X})^{2}}{n - 1} = \frac{\sum fX_{m}^{2} - \frac{(\sum fX_{m})^{2}}{n}}{n - 1}$	
1 st Quartile:	$Q_1 = L_1 + \frac{w_1}{f_1} \left(\frac{n}{4} - C_1 \right)$	
	L → Lower Class Boundary w → Width of Class Interval	
Median – 2 nd Quartile:	Median = $Q_2 = L_2 + \frac{w_2}{f_2} \left(\frac{n}{2} - C_2 \right)$	
	$f \rightarrow frequency \ of \ quartile \ class \qquad \qquad n \rightarrow total \ frequency$	
3 rd Quartile:	$Q_3 = L_3 + \frac{w_3}{f_3} \left(\frac{3n}{4} - C_3 \right)$	
	$ extbf{ extit{C}} ightarrow ext{ ext{ ext{C}}umulative frequency of preceding quartile class.}}$	
Mode:	$\mathbf{Mode} = L + h\left(\frac{f_m - f_1}{2f_m - f_1 - f_2}\right)$	
	$L \rightarrow Lower \ boundary \ of \ modal \ class$ $h \rightarrow Size \ of \ class \ interval$ $f_m \rightarrow frequency \ of \ modal \ class$ $f_1 \rightarrow frequency \ of \ preceding \ class$ $f_2 \rightarrow frequency \ of \ succeeding \ class$	